Энергосберегающие и энергоактивные здания

Курсовая работа
Содержание скрыть

Энергосберегающие здания, Энергосберегающий дом — перспективный дом

Энергосберегающие здания 1

Эксплуатация любого здания связана с расходом необходимой энергии для отопления, вентиляции, нагрева воды, освещения и питания различных бытовых приборов. Мы используем энергию в виде тепла и теплоносителей: газа, жидкого топлива и электроэнергии. Оплата за энергию представляет собой основную часть расходов по содержанию здания, причем эта часть расходов имеет постоянную тенденцию к росту цен. Оплата зависит от расхода энергии, а расход может быть низким, если здание спроектировано и построено по энергосберегающим правилам.

Какой же он, энергосберегающий дом?

Энергосберегающим называют такое здание, в котором используются проектные и технические решения, позволяющие эксплуатировать его с малым расходом энергии, сохраняя при этом комфортные санитарно-гигиенические условия.

Зачем нужно строить энергосберегающий дом?

  • малый расход энергии обеспечивает низкую стоимость эксплуатации дома;
  • повышенный комфорт — теплый и здоровый микроклимат помещения;
  • более высокая рыночная стоимость здания;
  • А энергетическая экономность здания, в свою очередь, полезна для общества и экономики, так как влияет на уменьшение загрязнения окружающей среды, экономию натуральных ресурсов, и уменьшает зависимость от импорта энергоносителей.

Поиск и поставка энергоносителей, а также их преобразование в энергию, приводят к загрязнению и уничтожению окружающей среды (двуокись углерода и другие газы, пыль, жидкие выбросы, заражение воды), таким образом, чем меньше расход энергии, тем меньше загрязнение. Однако для нужд защиты окружающей среды не достаточно только энергосбережения. Отсюда стремление, чтобы энергосберегающее здание было также и экологическим, в котором используются материалы, безопасные для здоровья людей и не оказывающие пагубное влияние на окружающую среду.

Как оценить энергетические свойства здания?

На основании средней величины годового расхода энергии в конкретном здании, приходящегося на 1 м2 полезной площади. Для проектируемого здания данную величину можно рассчитать, основываясь на данные проекта, а для построенного здания — измерить фактически.

13 стр., 6266 слов

Защита окружающей среды и экологические отели

... на окружающую среду и его последствия; 2) Проанализировать способы и методы защиты окружающей среды; 3) Раскрыть роль экологического туризма и в том числе экологических отелей в современном окружающем мире. 1. Взаимодействие человечества и окружающей среды 1.1 Человек и окружающая среда Человек ...

Чтобы здание могло называться энергосберегающим, необходимы следующие важные строительные решения:

  • расположение здания с учетом профиля местности, солнечного освещения, направления ветра, «зеленого щита» и.т.д;
  • форма здания максимально сжатая, без выступов и сбросов, помещения с большими окнами на южной стороне, маленькие окна или их отсутствие на северной стороне, буферные тепловые зоны (теплицы, предбанники, солнечные окна);
  • наружные ограждения, как стены, крыша, с хорошей термоизоляцией, герметичны, с минимальным количеством термических утечек;
  • наружные окна и двери с высокой термической изолированностью и повышенной герметичностью;
  • ночная изоляция окон;
  • балконы специальной конструкции, ограничивающей до минимума термические утечки;
  • автоматическая вентиляция с рекуперацией тепла;
  • система отопления и горячего водоснабжения с высоким КПД;
  • возможное использование солнечных коллекторов для нагрева бытовой горячей воды.

А основные различия между зданиями, проектируемыми на основании актуальных требований, энергосберегающими и пассивными зданиями представлены в таблице:

Вид здания

стандартноеэнергосберегающее пассивное

Расположение окон

произвольное

В основном на юге

В основном на юге

Качество окон

U max = 2.6

U около 1.2 — 1.5

U до 0,75

Толщина изоляц. слоя в стенах, величина U

Около 12 см U до 0.30-0.45

Около 18 см U до 0.20

Свыше 20 см U до 0,10

Толщина изоляц. слоя крыши или перекр.крыши

Около 16 см

Свыше 20 см

Свыше 25 см

Конструкция балконов

Традиционная (плита объединена с перекрытием)

Эл-ты с постоянной изоляц. стен илибалконы на собств. конструкции

На собственной конструкции (отделенные от наружной стены)

Система вентиляции

Естественная гравитационная

Гибридная или механическая с рекуперацией

Механическая с рекуперацией и грунтовым теплообменом

Система отопления

традиционная

низкотемпературная

Только аварийная

Использование солнечной энергии

отсутствует

Коллекторы в сис-ме ЦО, а также гор. водоснабжения

Расход энергии на отопл., вентиляцию и горячее водоснабжение

90-120(150)кВт-ч/(м2*а)

50-80 кВт-ч/(м2*а)

До 40 кВт-ч/(м2*а)

Энергосберегающий дом — это также:

  • хороший проект, в котором указаны все детали выполнения элементов, от которых зависит ограничение теплопотерь;
  • реализация строительства в соответствии с проектом, замером герметичности и термоизолированности наружных ограждений.

Экономическая эффективность энергосберегающих зданий.

Принимая решение о постройке энергосберегающего здания, зададимся вопросом, изменится ли сумма нашей оплаты за энергию и насколько, улучшим ли мы внутренний комфорт. Обеспечение энергоэкономности здания требует дополнительных издержек на строительство, так как в калькуляции дополнительных издержек на такое здание необходимо принимать во внимание разницу между стоимостью стандартных и энергосберегающих изделий. Например, стоимость увеличения толщины изоляции, разница в стоимости окон и дверей стандартных и энергосберегающих, разница в стоимости систем отопления и вентиляции и.т.д.

Увеличение размера инвестиций, в зависимости от выбранных решений, составляет в совокупности от нескольких до 12% стоимости стандартного объекта. Но, в результате осуществления инвестиций в односемейном доме можно достичь снижения расхода энергии до 16 000 кВт-ч в год.

Если воспользоваться кредитом на строительство дома, то данную величину экономии можно использовать на выплату дополнительной части кредита, сумма которого увеличилась на издержки по повышению энергетического стандарта.

Возможно, дополнительные расходы на строительство энергосберегающего дома и увеличивают сумму кредита, однако, ежемесячный кредитный взнос не увеличивается на сумму большую, чем та же ежемесячная величина экономии на стоимости эксплуатации. Совокупные издержки, как энергия и кредит, для энергосберегающего и стандартного здания приблизительно одинаковые, в то время как после оплаты кредита эксплутационная стоимость энергосберегающего здания будет ниже. Итог такой: строительство энергосберегающего здания является выгодным инвестированием.

Тепловая защита здания. Тепловая изоляция.

Существует множество различных теплоизоляционных материалов, которые можно использовать для изоляции наружных ограждений здания, однако, для каждого конкретного случая необходимо выбирать соответствующий материал нужной толщины. И помимо стоимости, при выборе изоляционного материала необходимо принимать во внимание следующие свойства:

  • теплопроводность;
  • диффузия (проницаемость) водных паров;
  • прочность (способность выдерживать нагрузку);

Толщина слоя тепловой изоляции зависит исключительно от качества материала, и наиболее общие указания для энергосберегающего дома приведены в таблице:

Вид ограждения

Толщина слоя теплоизоляции

Наружные стены

16-20 см

Перекрытие под неотапливаемой мансардой

18-25 см

Крыша и перекрытия крыши

20-30 см

Перекрытие под неотапливаемым подвалом

10-14 см

Изоляция будет надежной при условии использования полной системы продуктов одного производителя, по сравнению с комбинацией разных систем и решений.

Тепловая утечка

Причиной тепловой утечки является недостаточная, плохо выполненная или вообще отсутствие изоляции в конкретном месте. А также, среди причин такого явления можно выделить геометрический профиль здания, например, наличие множества углов или изломов.

Термическая утечка — это слабые места наружного ограждения (стены, крыша и.т.д), в которых теплопотеря больше по сравнению с остальной частью хорошо изолированного ограждения. Тепловая утечка провоцирует повышение расхода тепла на отопление здания, тем самым увеличивая стоимость его эксплуатации.

При наличии такого явления, внутренняя поверхность наружного ограждения (стены, перекрытия, полы)имеет более низкую температуру по сравнению с остальной частью того же ограждения, что может быть причиной возникновения пятен, увлажнения. Плесени и даже грибка, что в свою очередь может привести к возникновению трещин и осыпанию штукатурки. Поэтому, при проектировании и строительстве каждого здания, а в частности энергосберегающего, нужно использовать такие решения, которые позволят не допустить тепловую утечку.

Места, в которых чаще всего возникает теплопотеря:

  • место соединения отдельных частей здания, например, стена с перекрытием, стена с крышей;
  • углы здания, где на небольшую внутреннюю поверхность приходится большая наружная поверхность;
  • зона соединения окон и дверей с окружающей стеной, а именно перемычка над окном или дверью;

— балконы, где традиционное конструкционное решение, в котором ж/б балконная плита является продолжением перекрытия над ярусом, выполненное ниже балкона, приводит к прерыванию изоляции в месте расположения балконной плиты.

Герметичность здания

Энергосберегающее здание должно иметь не только хорошую изоляцию, а и герметичные наружные ограждения. Герметичность здания — необходимый элемент для ограничения потерь ценного тепла, а также для создания условий, в которых обмен вентиляционного воздуха будет отрегулирован.

Свежий воздух должен попадать в помещения путем соответствующих приборов (воздухозаборников или приточных решеток с регуляцией забора), в то время как неконтролируемый приток воздуха сквозь щели в окнах, дверях, стенах и т.д. должен быть сведен к минимуму. Выполнение герметичного здания требует использования соответствующих проектных решений во всех местах с риском возникновения неплотных соединений конструкций. энергосберегающий здание общежитие гелиокомплекс

В наружных стенах особенно тщательно должны быть выполнены соединения с наружными окнами и дверями, а также с перекрытиями и крышей. Нежелательные трещины могут возникать в стенах, если раствор, соединяющий керамические или бетонные элементы, не будет плотно заполнять швы. Очень важно выполнить герметично все проходы сквозь наружные ограждения элементов электрических, телефонных или телевизионных систем.

Технические решения. Расположение и профиль здания.

Потребность в энергии для отопления и вентиляции здания в значительной степени зависит от его расположения на участке, формы и внутренней планировки. Благодаря хорошему расположению и профилю можно уменьшить расход энергии даже на несколько десятков процентов.

Расположение здания должно по возможности учитывать натуральные ограждения (неровности грунта, соседние здания, высокие деревья), защищающие от ветра, дующего в доминирующем направлении, а также максимально использовать энергию солнца.

Форма здания должна быть открытой, без изломов, больших выступов и ниш. Выгодной является форма с наименьшей площадью наружных ограждений (стен, крыши, пола на грунте), тогда и теплопотери будут минимальны.

Большие окна с южной стороны — это основа, которой должна подчиняться планировка внутренних помещений здания. С южной стороны должен располагаться зал с большими окнами, а с северной стороны — подсобные помещения (ванная, кладовая, вход в здание), в которых окна маленькие или вообще отсутствуют.

Такое размещение окон позволяет по максимуму использовать тепло в виде солнечного излучения, что уменьшает потребность в энергии для отопления здания, а также позволяет лучше использовать натуральное освещение в помещениях. А для установки солнечного коллектора лучше всего подойдет место с ориентацией кровельного ската на юг.

Остекленный предбанник, зимняя оранжерея, или иные помещения, пристроенные к зданию, желательно использовать как проходные зоны, дополнительно теплоизолирующие и уменьшающие потребность в тепле для отопления.

Остекленные пространства и оранжереи.

В современных жилых зданиях используются остекленные пространства различного функционального назначения, например, зимние оранжереи. Эти пространства используются для уменьшения расхода энергии и обеспечивают жильцам доступ к дневному свету, солнцу, а также служат великолепным местом отдыха.

Пространство, ограниченное остекленными ограждениями, требует в летний период соответствующей системы охлаждения, а в зимний период — эффективной системы использования и сдерживания притока тепла. Более того, такие пространства требуют соответствующей вентиляции и системы защиты от слишком яркого солнечного излучения.

В энергосберегающих объектах остекленное пространство выполняет функцию буфера, который либо задерживает тепло и передает его внутрь здания ночью, либо охлаждает помещения летом. Несущая конструкция остекленных ограждений должна быть запроектирована так, чтобы были соблюдены все требования в части прочности конструкции, связанные с давлением снега, ветра и возможностью консервации и ремонта. Данные требования выражаются с помощью показателя максимально допустимого прогиба конструкции крыши или подпор.

Прозрачные элементы — это чаще всего стекло с разными свойствами, а также широкая гамма искусственных материалов, среди которых наиболее популярны полиэстры и полимеры. Стеклянные композиции должны характеризоваться соответствующей жесткостью, обеспечивать безопасный вход и быть стойкими к воздействию атмосферных явлений, как ветер, дождь, снег, град. Чаще всего в этих целях используется закаленное или безопасное стекло.

Конструкция оранжереи может быть холодной (чугунная, стальная, алюминиевая), для неотапливаемых пространств, или теплая (алюминиевая, заполненная изоляционным материалом, пластиковая, деревянная) — для отапливаемых пространств. Какую конструкцию использовать зависит от планируемой функции остекленного пространства.

Наружные стены.

Наружные стены защищают внутренние помещения здания от потерь тепла. Однако, часть тепла все-таки проникает сквозь стены. Поэтому, они должны иметь хорошие термоизоляционные свойства, с минимальным показателем теплообмена.

Применяется два вида конструкции стен: однослойные и многослойные.

В однослойной стене используется один строительный материал, который выполняет конструкционную функцию при сохранении тепловой изолированности стены на требуемом уровне. Ранее, наиболее популярным материалом для однослойной стены был керамический кирпич, а в настоящий момент, учитывая более высокие требования к термической изоляции, блоки ячеистого бетона или пористая керамика.

В многослойной стене, как правило, присутствуют слои, выполненные из 2 или 3 различных материалов, каждый из которых выполняет свою функцию. Несущий слой — внутренний, подверженный повышенной нагрузке, выполняется из материала с высокой прочностью (бетон, керамический или силикатный кирпич).

Следующий слой — термоизоляционный материал (пенопласт, минеральная вата).

И фасадный или наружный слой защищает стену от внешнего воздействия.

Окна.

Остекление окон в настоящее время — это сложенные вместе 2 или 3 стекла, которые фабрично склеиваются, оставляя между собой тонкую полость, заполненную сухим воздухом или специальным газом, изолирующим лучше, чем воздух.

Для тепловой защиты зданий используется стекло со специальным покрытием, которое пропускает солнечное излучение внутрь здания, но задерживает тепловое излучение от стен. Таким образом, значительная часть тепла задерживается внутри дома.

Стандартное окно с двумя стеклами имеет показатель U от 1.0 до 1.1 Вт/(м2*К), в то время как трехстекольное окно со специальным покрытием и заполненным газом межстекольным пространством, имеет значение U от 0.5 до 0.6 Вт/(м2*К).

Показатель U для оконных рам имеет обычные показатели 1.2-1.6 Вт/(м2*К), но в специальном исполнении может достичь величины 0.7! Ведь для жильца важна величина U для всего окна (остекление+рама).

Окно с тройным спаренным переплетом и специальным покрытием, в энергосберегающей раме, достигает ранее недостижимого показателя U 1.1 Вт/(м2*К).

Важным свойством окна также есть его герметичность. Особенно в энергосберегающих зданиях, где забор воздуха регулируется посредством аэраторов или воздухозаборников. Аэратор, установленный в верхней части окна, обеспечивает постоянное движение воздуха, например, уменьшает приток в случае отсутствия жильцов, или же ночью. Автоматическую регуляцию величины забора обеспечивает датчик, реагирующий на уровень влажности воздуха.

С возрастанием влажности (присутствия людей, приготовления еды) аэратор открывается больше, увеличивая приток воздуха. Такое регулирование воздухозабора позволяет получить энергетическую экономию без ухудшения санитарно-гигиенических условий в помещениях.

Жалюзи и ставни.

Наиболее низкая температура снаружи здания наблюдается ночью, когда окна в качестве источника света нам не нужны. Тем не менее, можно ограничить теплопотери, используя на окнах дополнительную изоляцию только ночью в виде ставень, жалюзи и роллет.

Более удобными в обслуживании по сравнению с наружными ставнями являются наружные жалюзи, которые могут быть выполнены из алюминиевых, пластиковых или деревянных реек. Жалюзи собираются в рулон, помещаются в специальный корпус над окном. Такие жалюзи уменьшают теплопотери ночью до 40%, более того, защищают от шума.

Балконы и террасы.

Балконная плита традиционно является продолжением плиты перекрытия, что приводит к разрыву изоляционного слоя наружной стены. Возникает, таким образом, тепловая утечка. А такие решения неприемлемы для энергосберегающего дома.

Наилучшим решением будет балкон, установленный на собственной конструкции (столбах или подкосах), соединенный с конструкцией здания только единичными прутьями арматуры, размещенными в нескольких точках. Также, верным решением будет использование специальных элементов, состоящих из наружных скрепляющих стальных частей и соединяющих балконную плиту с плитой перекрытия.

Также как и балконную плиту, необходимо хорошо изолировать плиты террас, причем нужно стремиться к тому, чтобы плита террасы не соединялась с плитой перекрытия, и не возникали лазейки утечки тепла здания. И очень важным моментом является правильное отведение сточных вод с террасы.

Балконы и террасы  1

Балконы и террасы  2

2. Примеры энергосберегающих зданий в мире, энергосберегающих домов, энергосбережением

Как ни странно, лидером в практическом внедрении автономных домов, впрочем, как в последнее время и во многих других отраслях, требующих сбережения энергоресурсов, является Китай, активно привлекающий западных специалистов и западные технологии. До последнего времени именно КНР являлась одним из крупнейших мировых загрязнителей атмосферы, и именно от её решений по сохранению мировой энергии в большой степени зависит будущее планеты.»Нулевой» дом в современной терминологии — это такое здание, которое благодаря новым технологиям может самостоятельно вырабатывать тепло и электричество для нужд его обитателей. Такие дома должны быть полностью независимы от внешних тепло- и электросетей. Это может достигаться за счёт использования солнечных панелей для сбора энергии, правильной организации воздуховодов для экономии на обогреве и кондиционировании, биореакторов, которые умеют получать энергию из органических отходов, и систем сбора дождевой воды, для того чтобы в дальнейшем её можно было использовать для потребления жильцами.

Один из реальных проектов такого рода — открытый в Нинбо ещё в сентябре 2008 года Центр энергетических технологий китайского филиала Ноттингемского университета, здание которого спроектировано итальянскими специалистами из компании Mario Cucinella Architects. В здании размещаются офисы, выставочный зал, лаборатории, стенды для испытания фасадов, климатическая камера и аэродинамическая труба. Общая площадь сооружения — 1300 кв.м. Всего в нём шесть этажей: пять наземных и один под землёй. Освещается здание исключительно за счёт фотоэлектрических элементов и ветряков. Когда есть солнце или ветер, здание накапливает энергию и сохраняет её в специальных аккумуляторах. Полностью заряженные батареи способны обслуживать дом холодным воздухом и светом на протяжении двух недель — срок, более чем достаточный для периода хмурого безветрия. В Нинбо, расположенном в 200 км от Шанхая, по преимуществу тепло круглый год, но на собственное охлаждение в здании Центра тратится всего 7-8 кВт•ч в год на каждый метр площади. Если бы не все эти инновационные технологии, то для обслуживания здания в год уходило бы примерно 450 тонн угля, а выбросы в атмосферу углерода составили бы 1081 тонну.

Крупнейшим автономным домом в мире может стать «Башня Жемчужной реки» в Гуанчжоу. Её строительством занимается американская компания Skidmore, Owings and Merrill. Башня будет иметь 69 этажей общим «ростом» в 300 м. Как и следует настоящему «нулевому» дому, она не будет подключена к внешним источникам электроэнергии. Характерная особенность этой постройки — наличие двойного остекления с вентиляцией между двумя слоями стекла. Подобная конструкция позволит снизить издержки на кондиционирование помещения. Кроме того, в нём будут автоматические жалюзи, которые будут самостоятельно менять угол раскрытия в зависимости от положения солнца. Будет у здания и хорошая солнечная электростанция, энергия из которой будет тратиться не только на освещение, но и на подогрев воды. Башня будет собирать дождевую воду и очищать её, обеспечивая себя по крайней мере технической водой для канализации и прочих нужд. Будут в башне и ветряные турбины для производства электроэнергии. Собственно, не в одном Китае сегодня озабочены энергопотреблением жилых и служебных домов. Не так давно власти Минска объявили о вводе в эксплуатацию многоэтажного «энергосберегающего дома». В нём девять этажей, и с виду это обычное панельное здание с площадью около 10 тыс. кв.м. Однако это не совсем обычный дом: на его крыше установлены солнечные батареи. Получаемого ими электричества, по расчётам проектировщиков, достаточно для освещения подъездов и фасада здания. При этом использоваться будут только энергосберегающие лампы. В каждом подъезде установлено по 60 энергосберегающих ламп мощностью 3,3 Вт. Есть в доме и умная система контроля за освещённостью: если в светлое время суток света в подъезде хватает, лампочки будут выключаться. Кроме того, дом оборудован специально приточно-вытяжной системой вентиляции, которая позволит дому лучше сохранять тепло, а значит, меньше тратить на его обогрев. По оценкам, инвестиции в энергосберегающие технологии должны будут окупиться уже через шесть лет. Если эксперимент окажется удачным, городские власти Минска не будут ограничиваться одним-единственным домом.

К светлому экологическому будущему, хотелось бы верить, придёт и Россия. В конце концов, президент страны Дмитрий Медведев на последнем заседании комиссии по модернизации ещё раз сформулировал задачу — снизить энергоёмкость ВВП к 2020 году не менее чем на 40% по сравнению с 2007 годом. Добиться этого будет вряд ли возможно одним только запретом 100-ваттных лампочек накаливания: энергия «утекает» через самые разные «щели», в том числе и через реальные щели в наших домах.

Энергосберегающие здания в Великобритании

Самым экологически чистым и благоприятным по отношению к окружающей среде были признаны офис и конференц-зал главного управления Британского института строительных исследований (BRE) в Хердфоршире (южная Англия).

Здание было построено большей частью из отреставрированных материалов.

Витрина британских идей и достижений в области реконструкции и консервирующих технологий, как было названо это сооружение в прессе, обошлась в 2,7 миллионов фунтов стерлингов Энергетической компании («EOF»).

Здание расположено в 52 километрах севернее Лондона и демонстрирует, как материалы, служившие основой старой постройки могут быть удачно переработаны по плану, составленному специалистами по сносу и утилизации устаревших зданий.

Трехэтажное здание «EOF» имеет общую площадь 2000 квадратных метров, 1350 из них использованы под офисы, способные разместить около 100 служащих. Кроме того, на одном из этажей есть центр для проведения конференций, вмещающий еще 100 человек, и три помещения для проведения семинаров.

тысяч кирпичей были отреставрированы, а для паркетного покрытия пола был использован паркет из других зданий, подлежащих сносу в этом районе.

Перед сносом из предыдущей постройки вся мебель, обрезки древесины, выключатели и розетки, жалюзи, пожарная сигнализация, система отопления и сушилки были сняты и заново приспособлены в школах, молодежных клубах и госпиталях Хефордширского графства. В различных вариантах были использованы также шиферные листы с покрытия крыши, деревянные детали, система водостока, даже стеклянные, металлические и пластиковые остатки были переработаны. Вся древесина была использована для создания мебели. Таким образом, практически 90% всего, что могло быть просто снесено, было отреставрировано и использовано в новых целях.

Ведущие специалисты по утилизации фирмы «Salvo» были призваны BRE для определения частей старого здания, которые могли бы быть пригодны для реставрации или использования в новых целях. «Снос уже практически начался, но мы смогли снизить стоимость сносимого здания, компенсировав таким образом его утилизацию, — говорят они, — BRE выбрал нас, чтобы продемонстрировать, насколько вообще может быть утилизировано здание».

«EOF» демонстрирует, как внимательное отношение к устаревшим зданиям может быть применено в дальнейшем строительстве. В настоящее время Великобритания производит 3,5 миллиона кирпичей ежегодно, в то время как 2,6 биллиона утилизируются.

«Половину из них можно использовать вновь, — говорят специалисты фирмы «Salvo». — Кирпич достаточно прост в утилизации, так как за последние 60 лет портландцемент вытеснил гипсовый раствор, потому что является более твердым при застывании и способен выдерживать большую нагрузку. Гипсовый раствор дает возможность легко реставрировать кирпичи, и в данный момент BRE исследует новые возможности улучшения этого процесса, чтобы сделать его более подходящим для современных строительных целей».

В плане здания предусмотрены открытые и циркуляционные пространства с целью обеспечения минимального расхода энергии на освещение и отопление рабочих пространств. Здание в некотором смысле выполняло роль экспериментальной площадки для проверки эффективности реставрационной и консервирующей технологий.

Снижение расхода энергии на вентиляцию было достигнуто следующим образом: количество кондиционирующих воздушных потоков было снижено и максимально учтено благоприятное расположение здания. Оно построено на небольшой естественной возвышенности, и в нем была обеспечена перекрестная система вентиляции. Кроме того, летом основание возвышенности охлаждается в течение ночи, и холодный воздух проникает в здание, охлаждая его изнутри. В случайные особо жаркие безветренные дни вентиляция подключается следующим образом: к пяти рядам труб на южной стороне подходит воздух с более холодной северной стороны здания.

При проектировании систем отопления и охлаждения была максимально учтена структура здания. Трубы обеих систем расположены прямо под крышей. Летом по ним проходит вода из естественного источника, расположенного на глубине 70 метров под землей, и затем возвращается туда же. Зимой вода конвекционно нагревается. О том, что цель — энергосбережение — была достигнута, свидетельствует то, что потери энергии были снижены на 30% по сравнению с заложенными в аналогичных проектах.

При проектировании системы освещения предпочтение было отдано естественному свету. Южный фасад на 45% остеклен, и интенсивность светового потока может быть отрегулирована. Были разработаны наружные горизонтальные карнизы. В жаркие дни они снижают интенсивность светового потока, а в пасмурные, поворачиваясь в обратную сторону, увеличивая инсоляцию. Эти меры снижают потребность в искусственном освещении. Кроме того, применена новая система фирмы «Phillips», которая автоматически регулирует интенсивность светового потока до нормального уровня, присоединяясь к наружным карнизам через электронную систему управления.проводит исследования не только в Великобритании, но и в Европе, выполняя различные консультации по сносу и перестройке зданий, вторичному использованию материалов.

Признанная одной из ведущих лабораторий, выполняющих исследования по зданиям, материалам и мерам пожароопасности, BRE ориентируется на стандарты Европейского сообщества. Ежегодно лабораторию посещает огромное количество делегаций и комиссий с различных концов Европы.

Swanly secondary school

В целом необходимо отметить, что это первая школа, построенная в Лондоне за последние 13 лет. Она способна вместить 1050 учеников, кроме того, предусмотрены помещения для отдыха и работы после занятий. Важно, что размер и ориентация помещений соответствует новым требованиям к проектированию учебных зданий, установленным правительством консерваторов еще в 1990 году, и именно это сделало школу первым зданием такого рода. В северном районе Лондона эта школа стала новым социальным центром.

План сфокусирован вокруг центральной крытой улицы-атриума, окруженной кирпичными стенами, которые также окружают несколько садов и дворов с южной стороны и стоянку для автомобилей с северной. Сложные искривленные крыши здания являются архитектурной доминантой улицы и как бы приглашают внутрь здания. Колонны центрального коридора, похожие на склоняющиеся по ветру деревья, удерживаются группой диагональных стоек, поддерживающих остекление. В зимний период эта улица служит накопителем тепла для всего здания. Крыша выполнена из стеклянных панелей, т.е. специального стекла, собранного из призматических полос, которые отражают высоко стоящее летнее солнце и пропускают лучи низко стоящего зимнего, обеспечивая, таким образом, альтернативу дорогостоящему искусственному освещению.

Летом улица перекрестно вентилируется воздушными потоками, поступающими через верхнюю часть, и необходимость в дополнительном кондиционировании отпадает.

Учебные классы имеют окна, выходящие как наружу так и на внутреннюю улицу, поэтому получают максимум естественного света, тепла и воздуха. Хотя классы имеют массу достоинств, но и они уже полностью не могут соответствовать постоянно меняющимся нормам. С южной стороны школы расположены выставочные дворы.

Совсем рядом со школой есть автобусная остановка, с которой по воскресеньям начинается экскурсия по местам Джека-Потрошителя, обитавшего именно в этом районе.

Архитекторам «Percy Tomas Company» пришлось вписать школу в очень маленький кусочек свободной территории и в очень маленький для англичан бюджет: 1,7 миллиона долларов.

London Ark

Можно сказать, что англичане являются пионерами в области применения новых строительных технологий и, кроме того, уделяют большое значение экологии самого здания. Говоря об этом, хочется отметить еще одно здание, при проектировании и строительстве которого было уделено много внимания его благоприятному влиянию на окружающую среду.Ark (архитектор Ральф Эрскайн), построенное в 1991 году, представляет собой традиционную форму офисного здания новой социальной среды. Здание включает атриум, объединяющий все части этого «города под крышей».Ark является важной ступенью в развитии экологии самого здания и подвергает сомнению то, что здание не бывает совершенным в этом плане.

Кондиционирующая система, например, крепится к потолку и свежий воздух циркулирует по всему объему с помощью распылителя. Водяные охлажденные батареи, автоматически регулирующие температуру, равную 14 градусам, препятствуют конденсации воды на стеклянном ограждении. Отработанный воздух выходит через вентиляционные решетки, установленные на деревянной крыше атриума.

Система отопления, использующая воду низкого давления, также установлена в верхней части здания. Тройное остекление способствует сохранению тепла, а также защищает от шума транспорта.

000 метров пространства залито натуральным светом из ядра-атриума. Воздух свободно струится внутри объема здания.

Снаружи London Ark напоминает огромную лодку, «ноев ковчег» — называют ее жители района Хаммерсмит. Медные обода, прикрепленные к стальному каркасу, выступают как связь между утонченным интерьером и грубоватым экстерьером фасада, напоминая доспехи. Цвет меди, грязновато-коричневый не слишком приятный на вид сейчас, со временем станет зеленым.

Здание внутри хорошо защищено от уличного шума, но улицы насыщены шумом поездов от расположенной рядом станции метро. Ральф Эрскайн предлагал построить парк над станцией, чтобы снизить уровень шума, но до сих пор неизвестно, материализуется ли когда-либо эта идея.

Предполагалось, что London Ark станет одним из новых типов зданий, в том числе и для жилья, но, как известно, жилье строится намного реже, чем здания офисов или банков.

Strata tower

Проект здания — это не очередной офисный центр, а жилой дом с парковкой, магазинами и фитнес-клубом, расположенных на нижних этажах. В верхней части дома установлены 3 ветряных турбины, способные генерировать около 8% энергии, необходимой для здания. Конструкция турбин с 5-ю лопастями позволяет значительно снизить уровень шума.

Высота 42-х этажного здания составляет 147,9 метров.

Стоимость проекта 113.5 млн. футов стерлингов, срок сдачи 2010 год.

Европейские государства несколько последних десятилетий работали над повышением энергоэффективности зданий. Работа ученых позволила уменьшить расход энергии в 2,5 — 3 раза, что можно назвать отличным показателем. В нашей стране такая практика только еще начинает свое развитие, но почва уже готова.

Если вы приобретете туры в Черногорию <#»537122.files/image004.gif»>

Главное условие строительства энергосберегающего дома — это его герметичность. Проще говоря, от степени воздухопроницаемости напрямую зависит то количество энергии, которое тратится на обогрев жилья в холодное время года. Если обратиться к опыту Германии, то можно отметить, что здесь люди сами стремятся сделать свое жилище более герметичным. Все просто: государство предоставляет субсидии тем, у кого дом построен герметичнее, чем обычно. Данный показатель измеряется уже после строительства, поэтому ошибки исправить может не только строитель, но и жилец дома.

Современные отели Черногории <#»537122.files/image005.gif»>

Концепция энергоактивного здания базируется накомбинированном использовании существующего передового теплотехнического оборудования, применении инновационных разработок в области ограждающих конструкций и использовании возобновляемых источников энергии- солнечного излучения, тепла воздуха и грунта.

требуется энергии в 10 раз меньше, в 4 — 10 раз меньше, Основополагающими подходами при проектировании энергоактивных зданий являются:

А. Сбережение энергии содержащейся и выделяемой внутри здания- теплоизоляция и герметизация ограждающих конструкций и цокольного этажа (подвала).

Б. Возвращение энергии, сбрасываемой в результате обязательных процессов- вентиляция, канализация.

В. Введение внутрь здания энергии окружающей среды- солнечное излучение, тепло наружного воздуха и грунта.

Технические решения и требования, применяемые в энергоактивных зданиях:

) Высокие теплоизоляционные свойства ограждающих строительных конструкций. Теплоизоляция от грунта фундаментов и цокольного этажа (подвала).

Теплосберегающие оконные системы;

) Максимальная герметизация здания. Двери должны быть снабжены устройствами автоматического закрывания (доводчиками).

Наружные двери и окна должны быть снабжены датчиками закрытия;

) Оборудование здания комбинированной системой горячего водоснабжения, отопления, вентиляции и кондиционирования включающей в себя энергоактивные ограждающие конструкции (ЭАОК), тепловой насос, сезонный аккумулятор тепла и использующей возобновляемые источники энергии- солнечное излучение, тепло воздуха и грунта.

Высокая эффективность работы системы обуславливается использованием в холодный период года запасаемого в тёплый период года избытка тепла, и соответствующего увеличения термического коэффициента теплового насоса, обусловленного повышением температурного уровня низкопотенциального источника тепла (сезонного аккумулятора тепла).

В тёплый период увеличивается холодильный коэффициент теплового насоса, что обусловлено снижением температурного уровня конденсатора;

) Приточно-вытяжная система вентиляции с рекуператором тепла совмещённая с центральным фанкойлом отопления-кондиционирования;

) Низкотемпературная система отопления;

) Крыша и фасады (отдельные участки) выполнены в виде энергоактивных ограждающих конструкций на базе гелиопрофиля;

) Оснащение энергоактивного здания элементами системы «умный дом».

наиболее эффективно может быть реализована при строительстве новых и реконструкции старых зданий

Наиболее эффективно может быть реализована при строительстве новых и реконструкции старых зданий 1

Общежития

В сельской местности и рабочих поселках городского типа, для поселков с постоянным и сезонным проживанием населения общежития могут быть квартирными для семей из 2…6 человек, бригадными для рабочих производственных групп на 10…100 человек (полеводческие и животноводческие бригады), общежитий-комплексов для больших производственных коллективов (200…1200 человек).

Основные требования проектирования общежитий: компактность объемно-планировочного решения с учетом обеспечения комфортных условий в различных природно-климатических условиях, сохранение теплоты или солнцезащиты от перегрева.

Одноэтажное мобильное общежитие с отдельно стоящими жилыми ячейками (упрощенного типа) с энергоснабжением от солнечных батарей ветроагрегатов (МАРХИ).

Архитектурно-планировочное решение предусматривает объединение в едином общежитии комплекса жилых комнат, помещений общественного назначения и обслуживания. Конструктивно-планировочные элементы выполняют в виде контейнеров, которые изготовляются цельнометаллическими, из клеефанерных панелей или из панелей, облицованных фанерно-стружечной плитой.

Отопление и горячее водоснабжение предполагаются от плоских солнечных коллекторов типа «горячий ящик», от этой же системы работает и охлаждение зданий. Резервным является отопление от котельной, размещенной в отдельном энергоблоке. Электроснабжение — автономное, в основном от солнечных батарей, ветряных установок и дополнительное — от дизельных, размещаемых в отдельном энергоблоке (возможно подключение к сетям).

Гелиотехнические установки размещаются в специальных панелях, опирающихся на сборно-разборную конструкцию, которая устанавливается на крыше здания, но может размещаться и отдельно на опорах. Панели с солнечными коллекторами и солнечными батареями могут поворачиваться вокруг горизонтальной оси для лучшего улавливания солнечной радиации.